

Контакты: Сидорова Елизавета Евгеньевна, ees.hwork@gmail.com, +7 905 611-10-32

Оптический контроль качества промышленной обработки минеральных удобрений кондиционирующими добавками

Юновидов Д.В., Сидорова Е.Е., Надежин М.Н., Соколов В.В. АО «НИУИФ» и Череповецкий Государственный Университет, г. Череповец

Цель работы

Разработка метода контроля качества обработки минеральных удобрений кондиционирующими добавками

Задачи:

- 1. Описать процесс кондиционирования в промышленном производстве минеральных удобрений;
- 2. Обосновать необходимость контроля качества кондиционирования;
- 3. Описать разработанный метод контроля качества кондиционирования;
- 4. Проанализировать результаты расчёта параметров качества обработки гранул кондиционирующими добавками (КД)

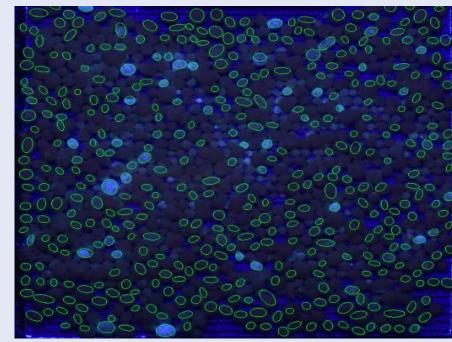
Устройство и принцип работы прибора

В основе изобретения лежит автоматизированный способ оптического контроля качества обработки минеральных удобрений КД, излучающими в ультрафиолетовом свете.

Устройство для получения изображения представляет собой «темную комнату» и кювету с рифленой поверхностью. Все используемые материалы не излучают в УФ свете. Элементы прибора должны обладать параметрами, нижние пороговые значения которых приведены в Таблицах 1 и 2.

таблица 1 - Характеристики «тёмной комнаты»

блица 1 - Характеристики «тёмной комнаты»					
	Устройство	Параметр	Значение		
	Фото-/видеокамера	Разрешение	Не менее 640х480		
		Фокусное расстояние	2.8 - 12 mm		
		Датчик	½. 7`` CMOS		
	УФ-лампа	Длина волны	≤ 370 нм		
		Мощность	≥ 6 B _T		
	Лампа освещения	Длина волны	> 400 нм		
		Световой поток	≥ 50 люменов		


Таблица 2 - Характеристики кюветы

Параметр	Значение	
Шаг покрытия дна	Диаметр наибольшей фракции исследуемого удобрения	
Излучение в УФ-области	Отсутствует	
Размеры	10 г. (удобрения должны	
	покрывать дно одинарным слоем)	

Прототип созданного оборудования

Фотография гранул в УФ-свете

Порядок действий для определения качества обработки минеральных удобрений КД:

- 1. Отобрать навеску удобрений, массу навески записать.
- 2. Навеску поместить в кювету и равномерно распределить гранулы по поверхности кюветы.
- 3. Сделать 2 снимка кюветы: при освещении обычным источником света и при освещении УФ-источником. Фотографии сохранить.
- 4. Предыдущий шаг повторить ещё 2 раза, предварительно перемешивая гранулы в течение 10 с.
- 5. Для каждой полученной фотографии произвести распознавание гранул по следующему алгоритму:
 - фотография переводится в градации серого;
 - добавляется гауссово размытие для сглаживания шумов;
 - проводится бинаризация изображения по алгоритму «Гауссова усреднения»;
 - по бинарному изображению проводится морфология поверхности для удаления случайных шумов и лучшего разделения соприкасающихся гранул;
 - применяется алгоритм распознавания контуров, каждый контур аппроксимируется эллипсом;
 - для каждого эллипса сохраняются следующие параметры: короткая ось, длинная ось, среднее значение каждого из RGB по площади эллипса;
 - сохраняется количество найденных эллипсов;
 - по данным количества найденных эллипсов для обычной и УФ фотографий рассчитывается полнота обработки гранул КД: $r = \frac{N_{uv}}{N}$, где N среднее количество найденных эллипсов при УФ-и обычном освещении в серии из трех параллельных измерений;
 - по каналам RGB рассчитывается яркость каждой гранулы для УФ-фотографии: $b = \frac{(r+g+b)}{3}$, где r, g, b значение средней интенсивности (яркости) каждого эллипса по красному, зеленому и голубому каналу, соответственно;
- 6. По рассчитанным значениям яркости каждого эллипса найти среднее значение яркости для каждой фотографии.
- 7. Значения яркости для трех параллельных измерений усреднить.
- 8. По полученному значению средней яркости рассчитать удельную яркость: $b_r = \frac{b}{b0}$, b, b0 яркость для исследуемого удобрения и 100% обработанного удобрения 1% КД.

Расчеты и классификация проводятся с использованием собственной зарегистрированной программы «DFOptic».

Выводы

- 1. Описан процесс кондиционирования минеральных удобрений, применяемый на предприятии АО «Апатит» г. Череповец.
- 2. Обосновано значение кондиционирования как процесса, непосредственно влияющего на качество готового продукта.
- 3. Приведён и подробно рассмотрен принцип работы прибора, осуществляющего оптический контроль качества обработки минеральных удобрений КД.
- 4. Рассчитанные параметры соотносятся с визуально наблюдаемыми изменениями в качестве обработки КД различных марок удобрений. Полученные результаты показывают, что предложенный метод пригоден для контроля процесса кондиционирования при производстве минеральных удобрений.

Теоретическая часть

Кондиционирующие смеси представляют собой смесь индустриальных (регенерированных) масел с добавлением первичных аминов (C_{17} - C_{20}). Кондиционирование минеральных удобрений осуществляется в барабанах—кондиционерах. Схема данного процесса представлена на Рисунке 1.

Рисунок 1 — Схема узла кондиционирования минеральных удобрений

При кондиционировании гранул минеральных удобрений происходит их поверхностное модифицирование: кондиционирующие добавки проникают в поры на поверхности гранул, частично заполняют их и образуют тонкую масляную плёнку. Такое поверхностное модифицирование даёт возможность снизить гигроскопичность, слёживаемость гранул, а значит упростить их транспортировку к заказчику (удобрения можно транспортировать без тары).

Обсуждение и результаты

С целью определения качества обработки КД: средней яркости всех гранул и относительного количества гранул удобрения с КД, было проанализировано 5 марок удобрений (Таблица 3)

Таблица 3 - Рассчитанные параметры качества обработки КД

Марка удобрений	Средняя яркость, % от 255	Количество светящихся гранул, %
NPK(S) 4-12-32(5)	20.70	6.74
NPK(S) 10-15-15(10)	29.73	24.40
NP 18-46	17.96	2.94
NPK(S) 5-15-30(5)	26.38	14.47
NPK(S) 1-20-20(5)	30.07	14.01

Рисунок 2 — График зависимости количества светящихся в УФ гранул от средней яркости всех гранул на фотографии

Таким образом, наблюдается взаимосвязь между контролируемыми параметрами, которые, в свою очередь, напрямую зависят от качества обработки гранул минеральных удобрений кондиционирующими добавками.