Projects
This page show my projects (implemented and under developed) with the aim, description and colleagues for each of them.
Table of Contents (TOC)
WEB climate and CO2 data acquisition system
Map with all ground station in datasets for CO2 data from 2007-2021 |
The aim
Web software, which is based on jupyter notebook for get CO2 and climate data for selected coordinate point. Technologies: jupyter
, python
, pandas
, geopandas
, matplotlib
, numpy
, ipywidgets
, voila
, nginx
.
Brief project description
My hobby project for climate data acquisition. It related to my ML engineering with rebels.ai team. In this project web application structure is developed and implemented on my data server.
Presentation of the project
Participants and they contribution
- D.V. Yunovidov - ideologist, software developer
Founded the scientific and engineering group
LogicYield command and logo |
The aim
Create commercial scientific group with industry data analyses and device development. We are inspired by industry!
Brief project description
We are a team that develops and implements automated and robotic control systems in industrial and laboratory practice. We are ready not only to sell our equipment, but also to conduct development together with the customer.
Presentation of the project
Participants and they contribution
- D.V. Yunovidov - ideologist, software developer
- V.A. Shabalov - engineer
- K.A. Menshikov - engineer
- M.N. Nadezhin - service engineer
- E.E. Yunovidova - web designer and developer
Optical analyzer of granulometric composition
Robotic system of granules optical control and data acquisition for conveyor belt and closed pipe |
The aim
On-line and automatic control of granules physical properties of industrially produced mineral fertilizers (color, size, shape). It allows to reduce the amount of produced waste (fraction < 2 mm) and increase the controllability of the production process. Technologies: ubuntu server
, qtile
, ansible
, ssh
, PI System
, Arduino
, Controllino
, smb
, python
, openCV
, PyQt 5
, pySerial
, multithreading
.
Brief project description
The system of the automated online control in industrial conditions is offered. The device consists of three independent parts: the system of sampling from the conveyor belt or closed pipe, the system of sampling and the block of optical detection of granules.
Features of the design include ability to analyze the shape and color of granule, work in industrial conditions and data transfer to the factory information system PISystem (MES-system).
Sampling is carried out by a robotic rotary system with Controllino PLC (industrial Arduino analogue). Then, the sample is fed into the analysis area by the linear vibrations. The entire system is controlled by a computer, which is integrated in the optical block (ubuntu server with minimal graphical UI).
The algorithm for calculating the parameters of granules consists of obtaining an optical-electronic image (three-dimensional RGB or HSV matrix of pixel), image preprocessing (smoothing, binaryization, morphology), calculation of closed contours, approximation of the found contours by ellipses and calculation of ellipses parameters (long and short axis, axis ratio and average RGB color intensity inside the ellipses).
All stages of obtaining and processing of the information are automated and implemented on Python programming language (with PyQt5 UI). This devices successfully pass industrial tests and were deployed in JSC “Apatite” fertilizer facility (Cherepovets city, Russia).
Presentation of the project
- “LogicYield” scientific group site
- XV International Scientific-Technical Conference on Actual Problems Of Electronic Instrument Engineering (APEIE), 2021
- The 4th International Conference on Mechanical, System and Control Engineering (ICMSC), 2020
- 3rd International Conference on Automation, Control and Robots (ICACR), 2019
- The devices has been working at the first and second workshops of JSC “Apatit” mineral fertilizer facility since December 2018 (Cherepovets city, Russia). Certificate of implementation
- Granule recognition program is registered in the Russian Federal register of software
- Patents for the device and the method of analysis are prepared (but not implemented yet)
Participants and they contribution
- D.V. Yunovidov - idea development, software writing, project implementation, administration of devices (network, data transfer, operation system etc.)
- V.A. Shabalov - creation of the device prototype (development and production of the vibration system of sample feeding and optical analysis unit)
- K.A. Menshikov - implementation of electrical circuits and low level commutation
- M.N. Nadezhin, Y.A. Agafonov and V.V. Sokolov - assistance of project implementation in industrial practice
2. Optical analyzer of granules surface treatment quality (UV and visible light)
The optical analyzer of the conditioning additives quantity on granules with example of data process |
The aim
Fast and calculus laboratory control of the granules surface (degree of mineral fertilizers conditioning additives (CA) covering for example). Technologies are: ubuntu server
, qtile
, ansible
, ssh
, PI System
, Arduino
, self-designer PCB
, smb
, python
, openCV
, PyQt 5
, pySerial
, multithreading
.
Brief project description
The method and device for control of the degree of mineral fertilizers CA covering was developed. The method consists of a specially designed analogue of the “darkroom” device. The UV light-emitting diodes were used (275 nm and 360 nm).
The peculiarities includes small time and cons of analysis, new “digitized” quality metrics for surface processing (uniformity of treatment), additional determination of granulometric composition, work in industrial laboratory conditions and data transfer to the MES-system (for example, PI System).
The device include built in computer. Management and calculations are carried out through the special software “UV Yield” (Python). The offered device and technique allows to receive the digital data about surface processing quality.
The algorithm for calculating granule parameters consists of selection of a representative sample of fertilizers (about 50 g., which is sufficient); measurement of granules in a special cuvette; granules recognition (similar to the previous project) and calculation of the completeness of surface processing (the percentage of fluorescent granules VS others granules, as well as specific brightness of the image).
Presentation of the project
- “LogicYield” scientific group site
- “III All-Russian Conference on Analytical Spectroscopy with International Participation”
- The equipment has been working in the Department of Quality and Standardization JSC “NIUIF” since 2017
The contribution of the participants
- D.V. Yunovidov - idea development, software writing and project implementation
- V.A. Shabalov - creation of a device prototype
- K.A. Menshikov - implementation of electrical circuits and low level commutation, designed PCB
- E.E. Yunovidova - assistance in preparation of project presentations and writing scientific articles
- M.N. Nadezhin - assistance in implementation of the project in production practice
Analysis of mineral fertilizers by "fingerprints" technique (spectral data, classification, clusterization)
"Fingerprint" analysis and identification of the fertilizers. a) software with clusters of fertilizers (manufacturer and brand); b) prepared fertilizer sample (pressed granules on boric acid substrates). |
The aim
Express identification of mineral fertilizers manufacturer and “standartiness” with energy-disperse X-ray fluorescence spectra (ED XRF). Technologies: PyQt5
, k-means
, $\chi^2$
, openCV
, matplotlib
.
Brief project description
Next tasks were set and solved: * determine manufacturer based on XRF spectra; * determine if sample is related to good one (“standartiness”); * write software for specific XRF spectra processing; * develop technique for unknown sample identification; * describe XRF spectrometers for such project.
The proposed technique allows to analyze different types of fertilizers by they “fingerprints” (using a unique ED XRF spectrum of each fertilizers type). This make possible to simplify the identification procedure (both for manufacturer and “standartiness”).
The main source of information in this work is the ED XRF spectrometers (“REAN”, “X-Spec” or “Panda” of JSC “Scientific Instruments”). Because of multidimensional clusterization, it is possible to simple press fertilizer granules on a boric acid substrate. Such samples are measured under the same conditions on a specific device. The entire spectrum was used as markers to classify the object (each energy channels, dispersions of channels in peaks and total dispersion). We can include in calculation obvious and not obvious properties of sample, with such approach was used.
It was found, that the studied fertilizer classes are perfectly divide into plane (2 main components). We accurate identified all encrypted objects (some of “PhosAgro” fertilizers) with using projection into two main components and \(chi^2\) statistics.
Next, special software was written, which allows to carry out all described approaches (include work with XRF spectrometers). For example, it automatically calculate distances to centers of clusters and chi-square statistics for unknown sample. Manufacturer and “standartiness” related to the smallest distance and \(chi^2\) value of pair “unknown sample - center of cluster”.
The total time of analysis of one sample does not exceed 5 minutes. For analyses you need only boric acid and fertilizer granules.
Presentation of the project
- “LogicYield” scientific group site
- “III All-Russian Conference on Analytical Spectroscopy with International Participation”, 2018
- “Mathematical and computer modeling in materials science”, 2019
Participants and they contribution
- D.V. Yunovidov - idea development, software writing and project development.
- A.S. Bakhvalov - ED XRD spectrometers supply for research.
Optical identification of the particle size of the pressed powder.
Example of prepared samples and a computer processed sample surface to classify by particle size. |
The aim
Powder’s particles size automation detection method was developed. The source of information is the optical-electronic image in the RGB system (which is normalized to brightness, temperature and gradient of colors). Technology: python
, jupyter
, openCV
, matplotlib
, classification
.
Brief project description
The way of powder’s particles size classification is describe. The researched objects are industrially produced mineral fertilizers. Samples with different granules size (less than 100 microns, less than 500 microns and 2-5 mm granules) and different chemical composition (about five brands of mineral fertilizers) were considered. The sample’s particles have an irregular shape close to spherical. Preliminary press in boric acid substrate was used to improve the accuracy of the analysis and eliminate the influence of the particle shape.
The essence of the proposed method is to obtain an optical-electronic image of the object with a resolution of at least 640x480 pixels (three-dimensional pixel intensity matrix in the Red-Green-Blue system). The area of the analysis is allocated from the image and converted into grayscale (two-dimensional matrix of pixel intensities with the resolution of at least 200x200 pixels). Next, proposed differentiation procedure allows to eliminate the influence of external illumination (gradient, temperature and brightness). The result is a “surface map” of the sample, which is reflected the defects of the pressed structure (patterns, which are responsible for the particle size of the pressed particles). Finally, samples are classified by the particle size, according to the patterns on the “surface map”. Four classification algorithms (linear, linear with L1 and L2 regularization and nonlinear random forest algorithm) were studied as well.
Presentation of the project
- “3 rd International Conference on Information Processing and Control Engineering”, 2019
- Conference “INTERM 2018”, 2018
- Article in Acta Physica Polonica A, 2019
Participants and they contribution
- D.V. Yunovidov - idea development, software writing and project implementation.
Optoelectronic microscope to study the properties of mineral fertilizer granules.
Example of caking granules (in software). |
The aim
Develop of software, which allow to observe, record and analyze objects in time (color and surfaces) with any USB-based camera or microscope. Technologies: python
, openCV
, PyQt5
, multithreading
.
Brief project description
Special software for objects analysis was developed. It allows to record video, analyze color, moisture (water drops) and contact area of granules (in total and in selected areas). Size of USB microscope allows to use it in climatic camera as well.
We was be able to show the effect of the “ring pore” with such approach (contact of two granules where moisture is accumulated and they stick to each other).
Presentation of the project
Participants and they contribution
- D.V. Yunovidov - idea development, software development and project implementation.
Scientific and research center "Control Technology"
Created laboratory for ESG project and ecology data analyses (before and after) |
The aim
Creation of a scientific and research center (SRC) on the basis of the Department of Chemical Technology of Cherepovets State University (ChSU) to provide independent quality control of industrial products with an accent on international techniques and recommendations as well as work with environmental, social, and corporate governance (ESG) project and ecology data analyses.
Brief project description
Scientific work, skills improvement (of outside and inside laboratory staff and students of CSU) are planned on the basis of this center. Carry out contracts with outside companies to provide flexible quality control of their products.
The payback of the project was calculated. The estimates of laboratory preparation and repairs were made. The project was approved by the technical and academic councils of ChSU. The repair of the laboratory should be completed by September 2020.
Presentation of the project
- Councils of ChSU (technical and academic).
- 1st place in the corporate competition “Young Leader” at JSC “Apatit” and 3rd place throughout “PhosAgro” Corporation, 2019
Participants and they contribution
- D.V. Yunovidov - developing and implementation of the project. Organize of laboratory preparation and repair.
- E.V. Tselikova - Vice-Rector for Science of ChSU, active assistance in promoting the project.
- O.A. Kalko - Chief of Chemical Technology department of ChSU, active assistance in promoting the project.
- K.V. Aksenchick - Assistant Professor of Chemical Technology department of ChSU, active assistance in promoting the project.
Concept of "corrected" analytical signal for analytical chemistry
Example of the "corrected" analytical signal's concept in case of multiple regression for P determination in crystalline NP fertilizers. |
The aim
Development of a concept, which allows to calculate the “corrected” analytical signal (using multivariate statistical methods) and use it in development and certification of chemical analysis techniques (with classical metrological approaches). Technologies: multidimensional regression
, python
, MS excel
, standards
.
Brief project description
The concept of converting the multi-dimensional statistics results into the usual dependence “analytical signal - concentration” is proposed. The present approach will allow to develop techniques, which use multivariate statistical analysis with classical metrological approaches (e.g. RMG 61-2010 standard, etc.).
Presentation of the project
- Industry-level techniques of analysis of \(AlF_3\) and crystalline MAPh (NP 12-52 fertilizer), which are used in JSC “NUIUF”
Participants and they contribution
- D.V. Yunovidov - idea development
Modified salt index parameter for mineral fertilizers.
Example of "Salt index calculator" software with "salt index VS chemical elements" correlations |
The aim
Modification of the “salt effect” parameter of fertilizers (how strongly they absorb moisture from the soil and plants) and it software implementation (based on table data, electrochemical calculation and XRF measurements).
Brief project description
“Salt index” parameter already exist in scientific literature. However, this parameter, which was proposed by J. Mortvedev in 1943, is outdated and confusing a lot. Mineral fertilizers and industrial production has changed a lot since 1943 (e.g. types of production lines and fertilizer’s brands). Moreover, you can find in literature, that there is a lot of misleading in calculation of this parameter (based on osmotic pressure or conductivity both soil solution and distilled solution).
It was decided to modify this parameter in view of modern requirements. Make its calculation more accurate and representative as well as make experimental technique of calculation (otherwise, we can’t certify such method).
At the time it was created, the parameter reflects the osmotic pressure of 0.1 \% soil solution of fertilizers. But since that time, more and more scientist just measure conductivity of soil solutions (or even distilled solution) of fertilizers. Nowadays, salt index have a lot of table for major fertilizer’s components to calculate it (in general, components with content more than 10 wt. % are used). From our point of view it is necessary to include all fertilizer’s components with than 1 wt. \% of total mass (we propose correction for phase composition of mineral fertilizer, the “modified method”). In addition, the technique was developed, which is based on conductivity of soils solution.
The software “Salt Index Calculator” is written and registered for the offered “modified” theoretical method. The practical approach is implemented in the industrial technique in JSC “NIUIF”.
Presentation of the project
- Technical Handbook
- The project of industrial technique of salt index measurements
Participants and they contribution
- D.V. Yunovidov - software writing and project development.
- M.N. Nadezhin - help in writing software.
- V.V. Sokolov and O.A. Abramova - assistance in the implementation of measurement technique.
XRF analysis of mineral fertilizers with adjustment of optical detected powder particles
Principle of combined optical and X-ray fluorescent analysis of mineral fertilizers. |
The aim
Comprehensive express analysis of mineral fertilizers for physical and chemical properties (explicit and implicit, such as nitrogen content, fractional composition and preliminary drying condition).
Brief project description
Statistical way for big data analysis of chemical and physical features of mineral fertilizers are considered (about 500 objects and 30 features). The range of such features is wide and combination of the ED XRF method and optical recognition of the sample surface were used to obtain these features. Multidimensional regression and classification algorithms quality with minimal “manual” data preparation is investigated. Optimal operation parameters for all considered algorithms are selected.
As a result, it was possible to determine the implicit properties of fertilizers, such as the nitrogen content (the signal of this element does not appear in the ED XRF spectrum), the preliminary drying condition of the sample (was dried or not) and the particle size of the pressed powder (Table 1).
Table 1. Predictions results of physical and chemical properties of mineral fertilizers.
N | P | K | S | Fraction | Was dried or not | |
---|---|---|---|---|---|---|
Values Range |
[0; 16] mass % | [15; 52] mass % | [0; 20] mass % | [0; 20] mass % |
granules; pressed: granules or powder < (500 mkm, or < 100 mkm) |
[0, 1] |
Classification, F-metric (%) | ||||||
Linear |
99.31 | 99.78 | 99.59 | 99.56 | 92.40 | 72.94 |
Linear With L1 |
99.65 | 99.78 | 99.57 | 98.87 | 92.51 | 73.08 |
Linear With L2 | 99.65 | 99.78 | 100.0 | 98.99 | 91.33 | 68.46 |
Random Forest |
100.0 | 100.0 | 100.0 | 98.99 |
98.40 | 73.37 |
Most Signif. Feature |
Cl (15.56) |
Ca (17.04) | Cl (14.31) | Ca (20.47) | counters area (25.70) |
P (11.49) |
Regression, average absolute deviation (mass %) | ||||||
Linear |
0.39 | 1.12 | 0.29 | 0.70 | - | - |
Linear With L1 | 0.60 | 1.32 |
0.42 | 1.04 | - | - |
Linear With L2 | 0.36 |
1.11 |
0.29 | 0.70 | - | - |
Most Signif. Feature |
K (20.19) | Sr (20.17) | background area (25.44) |
K (17.46) | - | - |
Presentation of the project
- “III All-Russian Conference on Analytical Spectroscopy with International Participation”, 2018
- “11th Winter Symposium on Chemometric”, 2018
- “INTERM 2018” conference, 2018
- Article in Acta Physica Polonica A journal, 2019
- My PhD thesis, 2017
- Utility model’s patent, 2019
Participants and they contribution
- D.V. Yunovidov - development of an idea, writing software and scientific articles
Flow analysis of phosphoric acid with ED XRF method
Energy dispersive (ED) X-ray fluorescence (XRF) spectrometer with a flow cell. |
The aim
Rapid analysis of phosphoric acid in industrial conditions (P, S, Ca and Fe elements).
Brief project description
An algorithm for continuous X-ray fluorescence analysis of extraction phosphoric acid (EPA) was developed. The proposed approach was tested for extraction technological process of phosphoric acid from apatite (calcium, sulfur and phosphorus were determined). The proposed approach allows to control the quality of EPA before the neutralization stage (right before the mineral fertilizer is obtained).
The detection limits are 0.1 wt. \% for P, 0.4 wt.\% S, 0.1 wt.\% for Ca and 0.004 wt\% for Fe. Relative standard deviations for characteristic lines did not exceed 4.35 \%.
Moreover, the possibility of suspension detection in EPA was shown (by Ca and S signals). Software for calculations and spectrometer’s control was created.
Presentation of the project
Participants and they contribution
- D.V. Yunovidov - idea development, software writing and project implementation.
- A.S. Bakhvalov - design and manufacture of cells.
- V.V. Sokolov - assistance in implementation of the project in production practice.
Techniques of analytical chemistry analyses
Example of using a corrected analytical signal after a multidimensional regression to determine fluorine in AlF3 (ED XRF). |
The aim
Development and certification of 7 mineral fertilizer techniques of analysis (at the industrial and state level).
Brief project description
Several of techniques were developed due to my regular laboratory work. Furthermore, main part of them were certified at the industrial and state level. The methods were developed in accordance with Russian standard “RMG 61-2010”.
Developed techniques.
Title of method | Basic method | Measuring range, wt. % |
Relative accuracy value, ±δ, % |
---|---|---|---|
Analysis of fluorine in industrial aluminum fluoride (AlF3) |
ED XRF | 93.0 – 98.0 | 1.1 |
Analysis of Si impurities in industrial AlF3 | ED XRF | 0.08-0.40 | 24 |
P2O5 analysis in crystalline MAP | ED XRF | 48.0 – 62.0 | 1.0 |
Analysis of P, S, K in PKS fertilizers | Wave XRF | P2O5 12.5 – 25.0 K2O 13.5 – 33.0 S 4.0 – 12.0 |
1.5 3.0 3.6 |
P2O5 analysis in apatite concentrate | ED XRF | 37.0 – 40.0 | 1.2 |
Analysis of Al2O3 in nepheline and syenite concentrates | ED XRF | 26.0 – 30.0 | 1.0 |
Salt index analysis in fertilizers | Potentiometry | - | - |
Presentation of the project
- JSC “NIUIF” everyday laboratory practice
Participants and they contribution
- D.V. Yunovidov - development of the techniques concept, collect of experimental data, statistic calculations
- E.V. Krylova - writing the text of techniques, statistic calculations
- O.A. Abramova - final verification the text of techniques, assistance in techniques development for industrial and state verification